3.6.14 \(\int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx\) [514]

Optimal. Leaf size=183 \[ -\frac {\sec (c+d x) (b-a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{\left (a^2-b^2\right ) d}-\frac {a E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{\left (a^2-b^2\right ) d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {F\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{d \sqrt {a+b \sin (c+d x)}} \]

[Out]

-sec(d*x+c)*(b-a*sin(d*x+c))*(a+b*sin(d*x+c))^(1/2)/(a^2-b^2)/d+a*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*
c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/(a^2-b^2
)/d/((a+b*sin(d*x+c))/(a+b))^(1/2)-(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos
(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1/2)/d/(a+b*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 183, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2775, 2831, 2742, 2740, 2734, 2732} \begin {gather*} -\frac {\sec (c+d x) (b-a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{d \left (a^2-b^2\right )}-\frac {a \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

-((Sec[c + d*x]*(b - a*Sin[c + d*x])*Sqrt[a + b*Sin[c + d*x]])/((a^2 - b^2)*d)) - (a*EllipticE[(c - Pi/2 + d*x
)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/((a^2 - b^2)*d*Sqrt[(a + b*Sin[c + d*x])/(a + b)]) + (EllipticF[
(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(d*Sqrt[a + b*Sin[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2775

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*Cos
[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*((b - a*Sin[e + f*x])/(f*g*(a^2 - b^2)*(p + 1))), x] + Dist[1/
(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m*(a^2*(p + 2) - b^2*(m + p + 2)
+ a*b*(m + p + 3)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] &&
IntegersQ[2*m, 2*p]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx &=-\frac {\sec (c+d x) (b-a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{\left (a^2-b^2\right ) d}+\frac {\int \frac {\frac {b^2}{2}+\frac {1}{2} a b \sin (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx}{-a^2+b^2}\\ &=-\frac {\sec (c+d x) (b-a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{\left (a^2-b^2\right ) d}+\frac {1}{2} \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx-\frac {a \int \sqrt {a+b \sin (c+d x)} \, dx}{2 \left (a^2-b^2\right )}\\ &=-\frac {\sec (c+d x) (b-a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{\left (a^2-b^2\right ) d}-\frac {\left (a \sqrt {a+b \sin (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{2 \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{2 \sqrt {a+b \sin (c+d x)}}\\ &=-\frac {\sec (c+d x) (b-a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{\left (a^2-b^2\right ) d}-\frac {a E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{\left (a^2-b^2\right ) d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {F\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{d \sqrt {a+b \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.65, size = 177, normalized size = 0.97 \begin {gather*} \frac {-a b \sec (c+d x)+a (a+b) E\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}-\left (a^2-b^2\right ) F\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}+a^2 \tan (c+d x)-b^2 \tan (c+d x)+a b \sin (c+d x) \tan (c+d x)}{(a-b) (a+b) d \sqrt {a+b \sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(-(a*b*Sec[c + d*x]) + a*(a + b)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a
+ b)] - (a^2 - b^2)*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] + a^2*T
an[c + d*x] - b^2*Tan[c + d*x] + a*b*Sin[c + d*x]*Tan[c + d*x])/((a - b)*(a + b)*d*Sqrt[a + b*Sin[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(639\) vs. \(2(239)=478\).
time = 2.26, size = 640, normalized size = 3.50

method result size
default \(-\frac {\sqrt {b \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+a \left (\cos ^{2}\left (d x +c \right )\right )}\, \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, \EllipticF \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{2} b -\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, \EllipticF \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{3}-\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, \EllipticE \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{3}+\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, \EllipticE \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{2}+a \,b^{2} \left (\cos ^{2}\left (d x +c \right )\right )-a^{2} b \sin \left (d x +c \right )+b^{3} \sin \left (d x +c \right )\right )}{b \left (a +b \right ) \sqrt {-\left (a +b \sin \left (d x +c \right )\right ) \left (\sin \left (d x +c \right )-1\right ) \left (1+\sin \left (d x +c \right )\right )}\, \left (a -b \right ) \cos \left (d x +c \right ) \sqrt {a +b \sin \left (d x +c \right )}\, d}\) \(640\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+b*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/b*(b*cos(d*x+c)^2*sin(d*x+c)+a*cos(d*x+c)^2)^(1/2)*((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2)*(-b/(a+b)*sin(d*x+
c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticF((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2),((a-b)/(a
+b))^(1/2))*a^2*b-(b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c
)-b/(a-b))^(1/2)*EllipticF((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2),((a-b)/(a+b))^(1/2))*b^3-(b/(a-b)*sin(d*x+c)+1
/(a-b)*a)^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticE((b/(a-b)*sin
(d*x+c)+1/(a-b)*a)^(1/2),((a-b)/(a+b))^(1/2))*a^3+(b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2)*(-b/(a+b)*sin(d*x+c)+b/
(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticE((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2),((a-b)/(a+b))^
(1/2))*a*b^2+a*b^2*cos(d*x+c)^2-a^2*b*sin(d*x+c)+b^3*sin(d*x+c))/(a+b)/(-(a+b*sin(d*x+c))*(sin(d*x+c)-1)*(1+si
n(d*x+c)))^(1/2)/(a-b)/cos(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^2/sqrt(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 458, normalized size = 2.50 \begin {gather*} -\frac {-3 i \, \sqrt {2} a \sqrt {i \, b} b \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right )\right ) + 3 i \, \sqrt {2} a \sqrt {-i \, b} b \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right )\right ) - \sqrt {2} {\left (2 \, a^{2} - 3 \, b^{2}\right )} \sqrt {i \, b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right ) - \sqrt {2} {\left (2 \, a^{2} - 3 \, b^{2}\right )} \sqrt {-i \, b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right ) - 6 \, {\left (a b \sin \left (d x + c\right ) - b^{2}\right )} \sqrt {b \sin \left (d x + c\right ) + a}}{6 \, {\left (a^{2} b - b^{3}\right )} d \cos \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/6*(-3*I*sqrt(2)*a*sqrt(I*b)*b*cos(d*x + c)*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a
*b^2)/b^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c
) - 3*I*b*sin(d*x + c) - 2*I*a)/b)) + 3*I*sqrt(2)*a*sqrt(-I*b)*b*cos(d*x + c)*weierstrassZeta(-4/3*(4*a^2 - 3*
b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*
I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b)) - sqrt(2)*(2*a^2 - 3*b^2)*sqrt(I*b)*cos(
d*x + c)*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c)
- 3*I*b*sin(d*x + c) - 2*I*a)/b) - sqrt(2)*(2*a^2 - 3*b^2)*sqrt(-I*b)*cos(d*x + c)*weierstrassPInverse(-4/3*(4
*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b) -
6*(a*b*sin(d*x + c) - b^2)*sqrt(b*sin(d*x + c) + a))/((a^2*b - b^3)*d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sin {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+b*sin(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**2/sqrt(a + b*sin(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^2/sqrt(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+b\,\sin \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^2*(a + b*sin(c + d*x))^(1/2)),x)

[Out]

int(1/(cos(c + d*x)^2*(a + b*sin(c + d*x))^(1/2)), x)

________________________________________________________________________________________